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REDUCIBILITY OF DIFFERENTIAL EQUATIONS
AND
PSEUDO-ISOMORPHISM OF AUTOMORPHISM
PSEUDO-GROUPS

KAZUSHIGE UENO

Introduction

Lie’s theory of the integration for a category C of differential equations is
composed of the following four kinds of problems:

(1) Determine all canonical forms of differential equations belonging to C.

(2) Discriminate the canonical form of a differential equation belonging to
C.

(3) Translate a differential equation in € to its canonical form.

(4) Integrate all canonical forms in ©.

Problem (1) is a classification problem, and Problem (2) is an equivalence
problem.

For example, let C(M) be the set of local vector fields with no singularity
on a manifold M. Then it is well-known that each element X of C(M)
possesses the caonical form 9/9x as a germ. That is, in this case, Problems
(1), 2) and (4) are trivial. Problem (3) is to seek for a local transformation of
X to 9/3x.

Now we shall pose the following problem: Let § be a pseudo-group on a
manifold Q, and let C; be the set of a differential equation E such that the
automorphism pseudo-group @(E) of E is equal to I'. Then the problem to
consider is to classify the category Cr.

As the associated problem to this, we consider the reducibility of a
differential equation E to another differential equation E’.

This is similar to the reduction of the classification problem of pseudo-
groups to the primitive case. '

Let (Q, @', @) be a fibred manifold, and let £ or E’ be a differential
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equation at j&(f) € J*(N, Q) or j¥(f) € J¥(N, Q’), respectively. Roughly
speaking, the pair (E, E’) is called a reduced pair if # induces a one to one
correspondence between the solution space of E and that of E".

The purpose of this paper is to formulate such a reduced pair of differential
equations and to characterize it by their automorphism pseudo-groups and
their resolvent systems.

In §1, we shall introduce the notion of orbit systems of a weak Lie algebra
sheaf.

In §2, we shall state the structure of a differential equation F as a family of
orbit systems of the weak Lie algebra sheaf which is induced from the
automorphism pseudo-group @(E) of E. The family is parametrized by the
solution space of a resolvent differential equation of E (Corollary 2.2.1). E.
Vessiot or H. H. Johnson refers to the contents of this section in [7] or [1].

In §3, we shall reduce the equivalence problem of differential equations to
that of their resolvent differential equations (Proposition 3.3.1). This will be
applied to the compatibility of reduction and equivalence in §6.

In §4, we shall define the reducibility of a differential equation E and prove
that under some conditions the reduction is of orbit-system-preserving
(Lemma 4.1.1). As one of the applications of Lemma 4.1.1, we shall show that
if £ is an Bas)-orbit system, any reduced form E’ is also an BQ(E,)-orbit
system. Furthermore we shall prove that if E is @(F)-automorphic, then E’ is
@ (E")-automorphic (Proposition 4.1.1).

In §5, we shall state the notion of pseudo-isomorphism of pseudo-groups
(Definition 5.1.1) which is given in [3] in a vague form, and shall characterize
the reducibility of a differential equation E to a differential equation E’ by
using the pseudo-isomorphism of @(E) to &(E”) (Theorems 5.2.1, 5.2.2).

In §6, we shall study the compatibility of reduction and equivalence of
differential equations, namely, for two pairs (E,, E{) and (E,, E;) satisfying
some conditions, if E, is isomorphic to E,, then E] is isomorphic to E; in a
sense (Theorem 6.2.1).

In §7, we shall give an example of a pseudo-group which is k-closed at
(x, /) for some integer k where f is a local immersion (Proposition 7.1.1).

The completeness and the order of pseudo-groups are explained in §8 and
§9 as appendices.

Throughout this paper, we assume the differentiability of class C*. By a
differential equation at p € J%(N, Q), we mean a system of functions defined
on a neighborhood of p. For a pseudo-group I', we always assume that any
element of T is near to the identity. As to a (weak) Lie algebra sheaf, refer to
[5] or [6].
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1. Orbit systems

1.1. We denote by J/(N, Q) the space of I-jets j!(f) of local maps f of a
manifold N to another manifold Q, and if dim N > dim Q > 1, we denote
by J(N, Q) the open submanifold of J ’(N~, Q) which is the /-jet space of
local submersions. If dim Q > dim N > 1, J/(N, Q) means the /-jet space of
local immersions which is also an open submanifold of J/(N, Q). In case
[ =0,J%N, Q) or JAN, Q) means the manifold N X @, and j%(f) the point
(x,f(x)) € N X Q.

Let ¢ be any local diffeomorphism of Q. Then ¢ is prolonged to a local
diffeomorphism ¢ of JY(N, @), which is defined by ¢GX(f) =ji(¢ ° f),
JXnH e J' W, Q).

Let X be a germ of a local vector field on Q. Then, by considering the local
l-parameter group of local transformations generated by X, we can easily see
that X is prolonged to a germ X of a local vector field on JY(N, Q).
Therefore a weak Lie algebra sheaf £ on Q is prolonged to a weak Lie
algebra sheaf £© on J*(N, Q).

Let °£" denote the isotropy of the stalk £, and set DY = £O/0L0,

Definition 1.1.1. A weak Lie algebra sheaf £ on Q is said to be (/, N)-reg-
ular if dim D, is constant. If £ is (/, N)-regular for any integer / > 0, then £
is said to be N-regular.
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Definition 1.1.2. A function ¢ given on an open subset ¢/ of Ji(N, Q) is
called a differential invariant of £ at j/(f) € @ if there is a neighborhood
' < © of ji(f) such that, for any p € Q' and any germ X of £{, we have
xX0. g, -Owhere(pp is a germ of ¢ at p.

Note that if £ is N-regular, then a differential invariant of £ at j!(f) is a
first integral of the involutive distribution D at j!(f).

Definition 1.1.3. A fundamental system of first integrals of D at j!(f) is
called a fundamental system of differential invariants of £ at j!(f).

Suppose £ isan N -regula.r weak Lie algebra sheaf on Q.

Lemma 1.1.1. LZLet {0 Y, and {0 }ie1 be two fundamental system of
differential invariants of £ at jxo( f), and set \(x) = 0’(1,5( f) and }S(x)
8/G(f)). We denote by (+) (respectwely (3)) the system of differential equa-

tions generated by 0 — N, (1 < j < my) (respectively 0’ A (1< j<m)).
Then the set of solutzons of (+) is equal to that of (¥).

Proof. We have the analytlc expressions 0’ = £(0,, <, 0,{,'), 1<j<m,.
Then we get A, = £(A;, - - - , A,), 1 < j < mj. Let s be any solution of (»)".
Then 6/(j} (s)) = A(x) 1 < j < m;. Therefore we have 6,(j!(s) =
@I - - - BLGHS) = B - - - M) = K(x), 1<) < m,

This implies that s is a solution of (%)’ Simila:ly any solution of (3)' is also a
solution of (+)'. Hence the proof is completed.

Definition 1.1.4. The differential equation (+) is called the £-orbit system
at (1, xy, f) and denoted by £(/, x,, f).

2. Structures of differential equations

2.1. Let E be a differential equation at j/(f) € J ’(N Q). We denote by
S (E) the set of solutions of E. For any neighborhood ¥ of j(f), we denote
by S(E)|UX the set of solutions s of E such that the image of j*(s) C U*.

Definition 2.1.1. A differential equation E! at j/(f!) is said to be isomor-
phic to a differential equation E? at j/(f?) if there exist a diffeomorphism ¥ of
a neighborhood ' of f'(x) € Q to a neighborhood U? of f}(x) € Q and a
neighborhood W of x € N such that S$(EYH)|W X AU! D s if and only if
Yos € S(EY W x U2 is called an isomorphism of E! to E2

Definition 2.1.2. If E' = E? = E and f! = f2 = f, we denote by &(E)
the pseudo-group on a neighborhood of f(x) generated by the set of isomor-
phisms of E to E. @(FE) is called the automorphism pseudo-group of E, and
each element of @(E) is called an automorphism of E.

22. LetT be a pseudo-group on @ such that £ is an N-regular weak Lie
algebra sheaf, where £ is the sheaf of germs of local vector fields X such that
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the local 1l-parameter group of local transormations generated by X is
contained in I. Let {§/}7, be a fundamental system of differential invariants

of £ at j (f). We set §'=(8y,- - -,0.). Then 8’ is a submersion of a
nelghborhood GLL’ of j;(f) onto a neighborhood W of 0'ji(f) =
(0’(_/x°( N, - Uit ( f))) € R™. Let p/** be the prOJectlon of J* +"(N 0)

onto JX(N, Q) and set *E = (p/**)yY(Q). Similarly let ' and B’ be the
projection of JY(N, Q) onto N and Q respectively. We denote by p*8’ the
map of U¥ to JX(V, W) c J¥(N, R”"), where V = a/(Q), defined by p*8’
UHHN) = JEO'GHN)). We set g “Jxo(el(.ll(f))) Then ¢* € J4(V, ).
For any function F locally defined at ¢*, we set F(6*) = (p*9")*F, which is a
function locally defined at J/**(f). Let {5 }7t, be any other fundamental
system of differential invariants of £, at _]x (f). If y is a differential invariant
of £; at j;**(f) of the form F(8’), then y is ‘also of the form F@é.

Definition 22.1. A differential invariant of £; at j;**(f) of the form F(8")
is called a I'-differential invariant of type / at j/**().

Defmltlon 22.2. A family of linearly mdependent differential invariants

= {B;}j=1 of Lr atjiF*(f) is called a I-family atj/**(f) of type (I, ) if IC
saUSfles the following condmons

(1) b, is a I-differential invariant of type / atj/*“(f), 1 < j <r.

(2) The differential equation at J,’f"( 1 generated by b, 1 <j <r, pos-
sesses a solution.

(3) The automorphism pseudo-group of the differential equation is equal to
T on a neighborhood of f(x,).

Proposition 2.2.1. Suppose 3 = {b;};., is a T-family at jiT*(f) of type
(I, 7). Then T is locally determined at f(x,) by . Namely, assume that each b
is defined on a neighborhood V'** of j'**(f). We denote by T a pseudo-grozq;
on B'YE(V'*%) which is deﬁned by the foIIowmg way I 2¢: UV if and
only if pV*F’p, = B(A<j<Non Vitk n J*%(N, Q). Then we have T =T
on a neighborhood QL cB """( VIR of f(x,).

Proof. Since b, is a differential invariant of £; at j_**(f), it is clear that r
contains I" on a neighborhood of f(x,). On the other hand T is contained in
the automorphism pseudo-group of the differential equation generated by b,
(1 <j <), which is, by the assumption that 3 is a I-family at JerK(f) of
type (I, r), equal to T on a neighborhood of f(x,). Therefore I" is equal to I on
a neighborhood QL C B+ ¥(V'*¥) of f(x).

23. Definition 23.1. A family ' = {§/}7., of such functions that 6/
(1 < j < m) are defined on a neighborhood U’ of j! (f) € JY(N, Q) is said to
be regular at (x,, f) if the following conditions are satisfied:

(1) We set 8/ = (8/, - - - , 8%). Then p*9’ is of rank constant on a neighbor-
hood U *k  QU*+* of j1**(f) for each k > 0.
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(2) We set W* = p“9"(U™**),k=0,1,2,- - - . For a map A of a neighbor-
hood & of x, to R"‘ such that j*Q\) € GZIY" for any x € ¥ and any integer
k > 0, there exists a map s of a neighborhood V' < & of X, to @ such that
8'Gl(s)) = AMx) on V.

_ Proposition 23.1. Ler @' = {§/}7_, be a family of functions at ji(f) €
JYN, Q) which is regular at (x,, f). Then we have an integer K and a
submanifold WX (8"y ¢ JX(N, R™) satisfying the following conditions:

(1) WX©B") 2 p"0'GLI () and (W@, a*(W*(©B"), a¥) is a fibred
manifold, where o is the projection of JX(N, R™) onto N.

(2) For a local map \ of N to R™, the differential equation §' = X possesses a
solution if and only if X is a local cross secton of (WX(8"), a®X(CWK(8")) a*).

Proof. - By the regularity condition (1) of & at (xo, f), V¢ = p*9! (W'**)is
a submanifold of J¥(N, R™) and (U**, U, p*8’) is a fibred manifold.
Moreover it is clear that (UW*, a*(W*), a*) is also a fibred manifold. Since
there is a neighborhood W** > ‘U** of jI*4(f) (resp. W™+ o ‘Y +++!
of jIY¥*1(f)) such that (U*k+1, "i*, p,+'=+') is a fibred manifold and
since (W*E*! Qe+l pk+igly and (X, AU*, p*8*) are fibred manifolds,
there exist neighborhoods U**! o "Uk+! of p"'”O’(j;:"‘* () and W* >
“U* of p*gI(JIT*(f)) such that (U %, ‘W, pf*?) is a fibred manifold. It is
clear that we have pUW* o W**! and 0'(G'(f)) is a solution of UW* for any

> 0. Therefore by Kuranishi’s prolongation theorem, there exists an integer
K such that, for any k > K, W is involutive at p“9’(j " “(f)) and pU* =
U**! on a neighborhood of p**'0'(jI***1()). We set Gllf"(e’) = UK LetA
be a solution of WX (#*). Then A is also a solution of UW* for any k > K.
Therefore, by the regularity condition (2) of @' at (x,, f), for a fixed X, E N,
we have a local map s of N to Q such that j? (0’(1’(5))) =j&() for any
integer a > 0. This implies that if A is a local cross secton of (QISICAY
aX(WK(8%), a¥), then the differential equation §’ = A possesses a solution.
Clearly if 8’ = X possesses a solution, A is a local cross section of (UWX(#%),
a X(UAK(8")), aX). This completes the proof of Proposition 2.3.1.

Definition 2.3.2. The space X (#’) in Proposition 4.1 is called a resolvent
space of #’. It is clear that if UX(#') is a resolvent space of §’, we have a
resolvent space U™ (8') of 8’ for any integer H > K.

Definition 23.3. Let ®' = {6/}}., be a family of functions at j (f) which
is regular at (xy, f) and let WE() = p*4/(A'*X) be any resolvent space of §'.
We set WX(@', E) = p®o'(I(p'* X~ *(E)) N W*X), where p/*X~*%(E) is the
(! + K — a)-th prolongation of a differential equation E at jg(f). Wk(@', E)
is called a resolvent space of (§’, E). @ is said to be E-regular at (xg, f) if
UWX(G’, E) is a regular submanifold of WX(8*) for a neighborhood AU'+* and
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any integer K > K, where K, is the minimum integer for which 8’ possesses a
resolvent space.

Proposition 2.3.2. Let ©' = {0 ) =1 be a family of functions at jx (N e

’(N Q) which is regular at (xo, ). Let E be an involutive differential equation
at je( 1), @ < I. Suppose that ©' is E-regular at (x,, f) and that, for any solution
A of the resolvent space UWX(8', E) of (8', E), we have I(8'(\)) c I(p'~%(E)),
where 8'(\) is the differential equation generated by 0J’ A (1 <j<h). Then
there exists a generator 3C = {0}, of pP(E), B = I + K — «, such that ¥, is
of the form (p*8')* F;, where F; is a function at p™0'(j;T*(f)) € J'"*¥(N, RY),
1<j<r

Proof. Let{F,,---,F.} be a family of linearly independent functions at

pRO'GLIHE(N) = jEO'(N) by which UWX(8’, E) is locally defined at jX(8°(f)).
We set b, = ( pK0’)*F (1 € j € r). We denote by (») the differential equation
generated by {b;}.,. Then it is clear that () D &(p#(E)). On the other
hand by the assumption, we have /(8‘(\)) c I(p'~*(E)) for any solution A of
QX(@’, E). This implies that S(+) C S(p?#(E)). Therefore we get S(s) =
S (p#(E)). Then it is easy to see that I(+) = I(p?#(E)) because E is involutive
and the resolvent space UK (@', E) is defined by F,, - - - , F,. This means that
PA(E) is generated by {,}7..,. The proof is completed.

Definition 2.24. A differential equation E at j5(f) € J*(N, Q) is said to
be I'-closed if the automorphism pseudo-group @(E) of Eisequalto T on a
neighborhood of f(x).

Corollary 2.2.1. Suppose £ is an N-regular weak Lie algebra sheaf and let
©' = {8/Y7., be a fundamental system of differential invariants of £r. at j (f).
Let E be a T-closed involutive differential equation at j;(f), where | + K — a
> 0. Suppose ©' is regular and E-regular at (xy, f). Then there exists a

T-family 3 = {§;};, atjx‘”‘(f) of type (I, r) such that 3C is a generator of
PEEYatji? (), B=1+K— .

Proof. Since E is I'-closed, it is easy to see that, for any solution A of
UK (6', E) we have I(8'(\)) C I(p'~%(E)), where 8'() is the £.-orbit system
generated by 0’ A; (1 <j < my). Therefore, by Proposition 2.3.2, PR(E)
possesses a generator I = {B;}7=1 such that b; is a I'-differential invariant. It
is clear that JC = {§;}., is a T-family atjx”‘(f) of type (, r).

3. Reduction of equivalence

3.1. LetT be a pseudo-group on @, such that £ is an N-regular weak Lie
algebra sheaf. For a fundamental system of differential invariants ©' =
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{8/ym, of Br atj!(f) € J(N, Q), there are neighborhoods @/ of j!(f) and
W of §'ji () € R™ such that (W, U, 8’) is a fibred manifold. Let I (T)
be the normalizer of I in the pseudo-group of all local diffeomorphisms of Q.
Then, for ¥ & (MNP, we can induce a local diffeomorphism D(8’, ¢)
of U such that 8’ ¢® = D(#’, ¢) - 8'. We denote by D(8’, J()) or
simply by D(9U(T)) the pseudo-group on U generated by D(@’, ¢), ¢ €
R (T). D(B’, ¢) is also simply denoted by D(¢).

Let E' and E? be I'closed differential equations at j:;( f) and at j;f o
respectively. Suppose there is an integer K such that / + K —a‘= 8’ >0,
i=1,2, and such that p#(E’) possesses a generator F/(8") = {F/(6")},.,
which is a T-family at j/**(f) of type (/, r). We denote by DX(@', E) or
simply by D*(E’) the differential equation at p*8'(j/*¥(f)) generated by
{Fl, -~ ’Fri}'

Proposition 3.1.1. E! is isomorphic to E* if and only if there is an element
o € N(T) such that D(9) is an isomorphism of DX(E") to D¥(E?).

Proof. Let ¢ be an isomorphism of E! to E2 Since @(E)=T on a
neighborhood of f(x,), it is easy to see that ¢ € 9U(T). Let A be a solution of
DX(E" and consider the differential equation #’ = A'. We denote by S(\!)
the solution space of the equation. Then, since p#(E’) possesses as a
generator a I-family F'(8') at j*X(f) of type (/, r) it is clear that §(E’) =
U riesprey ©AY), where SA) N S(p)# S if and only if SA’) =
S(p’). Since ¢ € M), ¢P*9’ = £(8’). Therefore 9'(l(d ° ) =
(V*0)l(9) = EAY) for s € S(\'). This implies that ¢ maps SA') to
S (A\?), where A2 = ("), that is, for each A! € S (DX(E")), there corresponds
A2 € §(DX(E?) such that A2 = D(¢) o A! and such that the isomorphism ¢
of E! to E2 maps S(AY) to $(A\?). This means that D(¢) is an isomorphism of
DX(E") to DX(E?). Conversely, assume that there is an element ¢ € ()
such that D(¢) is an isomorphism of DX(E') to DX(E?). Then, for s €
S(E"), if s € SQ), we have 8'(ii(¢ © 5)) = $V*0'(il(s)) = D($) ° 8'(i(s)
= D(¢) = Al = A% € S(DX(E?)). Therefore ¢ © s € S(E?). This means that
¢ is an isomorphism of E! to E2 This completes the proof of Proposition
3.1.1.

Remark 3.3.1. Let E be a differential equation at j(f) € Je(N, Q). Then,
roughly speaking, Corollary 2.2.1 implies that E is a family & of &(E)-orbit
systems, where ¥ is parametrized by the solution space of a differential
equation DX(E). That is, the structure of E is decomposed into that of
&(E)-orbit systems and that of DX(E). Proposition 3.1.1 implies that the
equivalence problem of T'-closed differential equations E; and E, is reduced
to that of D®(E,) and DX(E,) under the pseudo-group D(L(T)).



REDUCIBILITY AND PSEUDO-ISOMORPHISM 125

4. Reducibility of differential equations

4.1. Definition 4.1.1. Let (Q, Q’, 7) be a fibred manifold. A differential
equation E at j2(f) € J%(N, Q) is said to be weakly K-reducible to a
differential equation E’ at jZ(7 ° f) € J*(N, Q") by = if there exist a
nonnegative integer K and, for k > K, neighborhoods U* and U * of j,{: W
and j,f: (7 ° f), respectively, satisfying the following conditions:

) (U, W%, #*) is a fibred manifold, where #* is the map naturally
induced from 7. '

(2) () For any s € S(E)|U*, we have 7 o s € S(EN|AU*. (ii) For any
s’ € S(E")|U™, we have an s € S(E)|U with s’ =7 os. (i) f s: U V
or §: U — V belongs to S(E)|U* with7 o s = 7 o §on U n U, then we have
s=5§on U n U, where $(E)| U = {g € S(E); Imj*(g) C k.

Furthermore if E satisfies the following condition (3), E is said to be
K-reducible to E’ by 7: We set Q(E)|U* = { g € R(E); } € Q(E)P|U*
such that g o 8% = B* o y}. Then

(3) For any g: U — V which belongs to @(E)|U*, there is a diffeomor-
phism g’ of #(U)tow(¥)such thatg’ o7 = 7 o gfork > K.

Then we denote by &(E); the pseudo-group on a neighborhood of f(x,)
generated by {g’; g € @(E)|U ,m o g =g ° 7).

We say that E’ is a (weakly) K-reduced form of E and the pair (E, E") is
called a (weakly) K-reduced pair.

Let E be a differential equation at j!(f) € J(N, Q). For a neighborhood
' of j! (f), we set S(E, W) = U ;55 Imji(s) n .

Corollary 2.2.1 makes the following definition significant.

Definition 4.1.2. A differential equation E at j(f) € J(N, Q) is said to
be /-regular at x if E satisfies the following conditions (1), (2) and (3):

(1) The sheaf E@( £y associated to the automorphism pseudo-group &(E) is
an N-regular weak Lie algebra sheaf on a neighborhood of f(x).

(2) There are an integer K’ and an @(E)-family 3C = {§;}}~, at ! K(f) of
type (/, r) such that /' + K’ — « > 0 and p’+X'~%(E) is generated by IC for
1 >1

(3) There is a neighborhood QU* of j¥(f) such that S(E, U*) is a regular
submanifold of JX(N, Q) for k > I.

We denote by DX(8', E) the differential equation generated by
Fl, - -+, F! where b} = F}(8"). It is called a resolvent system of E. (Refer to
Definition 2.3.3.)

Remark 4.1.1. If a differential equation E at j7(f) is /-regular at x, then it
is clear that E is k-regular at x for any k > /.

Let T and I be pseudo-groups on Q, and j/(f) a point of J/(N, Q). We
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say that I'' = I'? on a neighborhood QU of j/(f) if T'j@ = T

Definition 4.1.3. Let I' be a pseudo-group on Q such that £, is an
N-regular weak Lie algebra sheaf. T is said to be Iclosed at (x, f) if there is
an integer / such that for I >/, @(Er(L x, )) = T on a neighborhood of j!(f),
where £r.(/, x, f) is the £.-orbit system at (/, x, f).

Remark 4.1.2. When dim N > dim @, in Lemma 5.1.2 we shall show that
any pseudo-group which is complete at (zy, 1) is /~closed at (x4, f), where
zg = f(x,), and / is the order of the pseudo-group at (x4, f). When dim N <
dim Q, in §7 we shall give an example of a pseudo-group which is closed at
(xo f) where f 1s a local immersion of N to Q.

Let f be a local map of a neighborhood of x € N to Q which is an
immersion (resp. a submersion) if dim N < dim Q (resp. dim N > dim Q).

Definition 4.1.4. A pseudo-group I' on Q is said to be /-automorphic at
(x,f) where ! is a nonnegative integer, if the following conditions are
satisfied:

(1) £; is an N-regular weak Lie algebra sheaf.

(2) The orbit system £..(/, x, f) is T-automorphic.

As for the definition of “T-automorphic system”, refer to Definition 9.1.2.

Let (Q, Q°, #) be a fibred manifold, and let £ (resp. £”) be a differential
equation at j2(f) € J*(N, Q) (resp. JimeoNE J¥(N, 0")). Suppose E and
E’ are l-regular at x4, and let {8*}7«, (resp. {;%}7%,) be a fundamental
system of differential invariants of Cg, at j¥(f) (resp. gz, at jk(7 ° ).
We denote by Df (resp. Df) the involutive distribution on a neighborhood of
Jeo(D) ETXQ, Q) (esp. ¥, gum © 1) € JHQ, 7)) induced from L,
(resp. £ggr)-

Lemma 4.1.1. Suppose E is K-reducible to E’ by 7. Then the following two
assertions (A) and (B) hold. N

(A) For any [ > I’ = max(l, K), we have a fibred manifold (@’ (9” D(=)
satisfying the following properties:

(1) © of 0" is a neighborhood of 0’(1 () ER™ or 0”(_1 (7 ° f)) ER™,
respectwely

() Di(m) induces an onto map ol of S(D* ‘@ ENwE 10
S(DX K07, E")|OU X" for some neighborhoods UK’ of j! (0’(_1’(]))) and WX’

of ji (0'1(11(7 ° ).

(3) For any A € $(DX(#, E))|621§K the space S (8'Q\) is transferred by =
into §(0”(X)), where X' = D'(7) o A, 0'Q\) is an Lez)-orbit system generated
by 6/ — N (1<j<m), and 0"(N) is an Lgy,-orbit system generated by
0! =N (1 <j<m.

(B) If one of the following two conditions holds, 0*(\) is weakly k-reducible to
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0%\ by w for k > I, where A = 0%(j*(f)), and N’ = D¥*(m) * A:

(i) The onto map OF is one to one.

() dim (z*),Df = dim DS, @(E’) and Q(E), are complete at
(7 o f(x0), 1), and @(E’) is k-automorphic at (x4, 7 ° f) for a sufficiently large
integer k > I’. Moreover, if @(E) is k-closed at (xq f), then 8*Q\) with
A = 0X(G*(f)) is k-reducible to 8"“(\") with X’ = D*(z)\ by 7.

Proof. Letg € &(E)|QU'. Then we have a local diffeomorphism g’ of Q’
such thatg’ e wr =7 o g. Let s’ € S(EN|AU, and set ¥ = g’ o 5’. Since E is
!’-reducible to E’ by 7, we have an s € $(E)|U" such that s’ =7 o 5.
Therefore we get §¥ =g' o5’ =g/ oqros =g ogos, Since g € Q(E)U
and s € S(E)|U,wehavegos € S(E)U . Thuswe get ¥ =wogos €
S(E)U™ because of the /'-reducibility of E to E’ by . Since s is any
element of 8(E N, we getg’ € G(E)U”.

We set n/ = (w’)*0” (1 < j < mf). Then, by the above stated fact, 4/
(1 € j € mj) is a linearly independent differential invariant of £g,;, at jx‘)( N
Let {5/}, be a fundamental system of differential invariants of L, at
jx‘)( f). Then we have expressions 11, = ’(0 s, 0,5) (1 <j <my. For s,
and s, € $(0‘(N)), if we set s = 7 ° s,, we have § ”(j,f(s D)= 8/Gl(mes)) =
€ 1)*0 'l(l I(S ) = 1/Ui I(S ). Since 6, 1(1 w(s)) = 91(1 I(Sz)) Mx) (1 <j <my),
we get § '1(1 (s)) = 8/'ii(sy) = N(x) = 4’,1(}\ (x), - -2 AN (1 < j < m).
This means that $(8’(\)) is transferred into 5(0”()\’)) by #. Since E is
K-reducible to E’ by =, we have a fibred manifold (U*, U *, #*) such that
QU (resp. U™) is a neighborhood of j(f) (resp. jf(w © f)) and such that =
induces 2 map of §(E)|U onto S(E)|U™, k > K. Therefore, if we set
WK' = pK0'(<>2U+K’) and X" = pKPUU*KY, then $(8/(\) with A €
S(DK(0’ E)| WX s transfg.rred _into 5_(0”0\ )) for some A €
S(DX(8”, EN)|OUK". We set ¢! = (¢4, - - -, ,), and denote by p the pro-
Jecuon of R™ onto R™ defined by p(xl, T X)) = (X 0, Xy). We set

9i@), 07 = 9" and D z)=p ° ¢’. Then (&', 9” D’(w)) is a
fibred manifold satisfying conditions (1), (2) and (3). This proves (A).
If the condition (i) is satisfied, it is now clear that 8*(\) is weakly
k-reducible to 8*(\) by 7 for k > I".

Now we assume the condition (ii). Since E is K-reducible to E’, we see that
(7*),Df = DE. for a sufficiently large k. On the other hand, since @(E’) and
&(E), are complete at (7 © f(xy), 1), by [6, Proposition 8.1] we can easily see
that @(E)|U* = @(E")|U™ for a neighborhood AU™* of jk(7  f). Since
@(E") is k-automorphic at (xg, 7 © f), §%(\") is €(E) k—automorphxc

Since 7 maps $(8*(\))|U* into S (8*A\))[U %, and since §*(\) is &(E),-
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automorphic, §(8%(\))|AU* is transferred onto S(87%(\))|AU. Since E is
k-reducible to E’, we see that 8%(7) is weakly k-reducible to 8'%(\").

If @(E) is k-closed at (x,, f), we see that @(#*(A)) = &(E) on a neighbor-
hood of jjf)( f). Therefore the condition (3) in Definition 6.1 is also satisfied,
namely, 8(\) is k-reducible to 8’“(\") by #. This completes the proof of
Lemma 4.1.1.

Remark 4.1.3. For a pair (E, E") which does not satisfy the reducibility,
D¥(xr) is also defined if @(E)|U* is transferred by 7 to @(E’)|U* for a
neighborhood AU or AU,

Proposition 4.1.1. Let (Q, Q’, w) be a fibred manifold, and let E be a
differential equation at j;(f) € JeN, Q) which is K-reducible to a differential
equation E' at j&(7 ° f) € J¥(N, Q") by ©. Suppose that E and E' are
l-regular (I > a, a") at x,. We set I’ = max(l, K). Then the following two
assertions hold:

(1) If p"~*(E) is an Lgx,-orbit system at (I', x¢, f), then p" ~*(E") is also an
Lezry-orbit system at (I', xg, 7 © f).

(@) If K = 0, and E is &(E)-automorphic, then E’ is & (E")-automorphic.

Proof. By Lemma 4.1.1. D' (w) induces a map of $(DX'(8”, E))|WX"
onto $(DX"(8", E)|WX". Since p"~*(E) is an Lgy,-orbit system at
s %0, ), S(DX'(87, E)|UWX" consists of a single point. Therefore
S(DX"(87, EN)|WX" also consists of a single point. This means that
pY~%(E")is also an BQ(E,)-orbit system at (I, xq, 7 ° f). This proves (1).

Suppose E is @(E)-automorphic. Then any s € S(E) is of the form g © f,
g € @(E). Let s’ be any element of S (E")|U" where A" is a neighborhood
of (x4, m ° f(xx)) € N X Q. Then by the O-reducibility of E to E’ by o, there
is an § € $(E)|U° such that s’ = 7 © §, and that A is a neighborhood of
(X0, f(x9)) € N X Q. As was proved in Lemma 4.1.1, for any g € &(E)|U°,
we have a unique g’ € @(E')|U° with g’ e 7 = 7 o g. Therefore we get
§=mef=mqoegof=g oqof This implies that E’ is &(E’)-automor-
phic. This proves (2).

5. Pseudo-isomorphism of automorphism pseudo-groups

5.1. Let (Q, Q’, w) be a fibred manifold, and let I and I" be pseudo-
groups on Q and Q' respectively.

Definition 5.1.1. T is said to be k-pseudo-isomorphic to I" by = at
(g, 7(q)) € Q X Q' if there exist neighborhoods U* and AU* of jX(1) €
J4(Q, Q) and jX (1) € J¥(Q’, Q") respectively, satisfying the following con-
ditions:

(1) For any g: U— V which belongs to T'|U, there exists a map g’
7(U) - #(V) belonging to I'|"* such that 7 o g = g’ o 7 on U.
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(2) For any g’': U’ — ¥V’ which belongs to I"|52L”‘, there exists a map g:
U— V belonging to T'|2* such that (U, U’, 7) is a fibred manifold and
wog=g oqonlU.

(3) Let g: U— V and §: U — ¥ be two maps which belong to T|U* such
that (U, U’, =) and (U U’, w) are fibred manifolds and such that 7 o g =
geaonUandreg=g o7 onU. Then we have g = gon U N U.

Remark 5.1.1. If T is k-pseudo-isomorphic to I by = at (g, 7(q)), there is
a neighborhood @ of ¢ such that T is k-pseudo-isomorphic to I by 7 at
(p, m(p)) foranyp € AU.

Lemma 5.1.1. Let (Q, Q', 7) be a fibred manifold, and let T (resp. I') be a
pseudo-group on Q (resp. Q), which is complete at (z, 1) (resp. (n(2), 1)) for
any z € Q. Suppose dim N > dim Q, and let f be a local submersion of a
neighborhood V of x4 onto U C Q. For a sufficiently large integer I, we assume
that there are neighborhoods U’ of j Jxg '(f) € JAN, Q) and U of _]x (mef)E

JUN, Q") satisfying the following conditions:

) (W, u’, 7'y is a fibred manifold.

Q) £r(, x, f) is weakly K-reducible to £r.(I, x, 7 ° f) for any x € V.Then T
is I'-pseudo-isomorphic to T by 7 at (f(xp), 7 © f(xg)), I’ = max(l, K).

Proof. Wesetf' = 7 o f. For amap g: U — V belonging to T|U", g o fis
also in S(Er(l, xp ), W). If weset f=gofand f'=mof, f: fFYU)>
7(V) is a solution of £r.(/, x4, f) and is also a solution of En.(J, x, f') for
x € f)(U). Since £~(J, x, f) is, by [6, Theorem 6.1}, I'-automorphic for a
sufficiently large integer /, there is a g, € I"|2"" such that /' = g/ o f' on a
neighborhood of x. Since f is a submersion, we have clearly g, c7r =7 o g
on a neighborhood of U, C U of f(x). It is obvious that if U, n U, # &, we
have g, = g on #(U,) N #(U,). This implies that there exists a map g"
a(U) — 7(V) belonging to I"|U " such that 7 e g = g’ > 7 on U.

Conversely let g’: U’ — V' belong to I'|U"" and set f/ = g’ o f’. Then f” is
a solution of £r(/, x, f) for any x € () (U"). Since £r(/, x, f) is weakly
K-reducible to £.(/, x, f), we have an element s, € $(E:(/, x, f))|U" such
that f = 7 o 5,. Then since £.(/, x, f) is T-automorphic, s, is of the form
s, = g, © f on a neighborhood of x, where g € T'|2" and g, is defined on U,
which satisfies 7(U,) Cc U’. We set U= U /v U,- Then we can easily
see that (U, U’, ) is a fibred manifold. Moreover if U, N U, # &, then we
have 7 o 5, = 7 ° 5, on f(U, n U,). For £ € f'(U, N U,), both 5, and s,
are elements of &(Er(/, %, f))|U"". Therefore, by the reducibility, s, = s, on a
neighborhood of %. Thus we get s, = s, on f(U, N U), that is, g, o f =
g, ° fon f™(U, N U,). Since f is a submersion, we get g, = g, on U, N U,.
This implies that we have an element g € I'|U defined on U such that

Teog= g°‘ﬂ'
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Let §: U — V be another element of I'| such that g’ o7 = 7 © § and
(U, U’, 7) is a fibred manifold. Then forany x € f"(U n U),g > fand g o f
are elements of S(C.(/, x, f)|AU'. Since weogef=amogof €
S(Er, x, )|, we get g o f = g o f on a neighborhood of x. Since x is
an arbitrary point of f~(U N U), we have gof=gof on f7(U n O).
Since f is a submersion, we obtain = g on U n U. This proves that T is
I’-pseudo-isomorphic to I'” at (f(x), 7 ° f(xg)).

Lemma 5.1.2. Suppose dim N > dim Q. Let T be a pseudo-group on Q
which is complete at (z, 1), and let f be a submersion of a neighborhood of
xq € N to Q with f(xg) = z,. We denote by I the order of Cr at (xo, f). Then,
for 1 > I, there is a neighborhood A of _]x () such that @(C(l; xp MW =
rja.

Proof. Let {0’ }7%, be a fundamental system of differential invariants of
£r at j{(f). We assume that each 01' is defined on a neighborhood ¥ of _]xo( §2)
and B/(V) D Imf. We set A = Im f. Then £.(/ x, f) is defined for any
x € A. Let ¢: U(3z5) = V(D2 belong to @Cr(, X /). Then f=

o fis a solution of £.(J, x, f) for any x € f~}(U). Since by [6, Theorem 6.1],
Br(l x, f) is T-automorphic, we have a g. €T such that f=g_°f on a
neighborhood of x. Since f is a submersion, we see that ¢ =g on' a
neighborhood U, C U of f(x). Moreover we have clearly g, = g, on U, N
U,. This implies that ¢ € T|9 and any restriction of ¢ to an open subset of U
belongs to I'|. This means that @(2p(/, x,, /)| C TJAU. Let U, 1 >/, be
a nelghborhood of J,, (f) such that (2, A, 7') is a fibred manifold. Then we
have @(Br(l Xos f))]GZL’ c T|%. Conversely we have clearly I ¢
@(Er(, xo, /)| This completes the proof of Lemma 7.2,

5.2. Theorem 5.2.1. Let (Q, Q’, 7) be a fibred manifold, and let £ (resp. £')
be a regular weak Lie algebra sheaf on Q (resp. Q’). Assume dim N > dim Q.
If £\, xo, f) is weakly K-reducible to £'(l, xo, w o f) by = for a sufficiently
large integer I, then @(E(I, x,, 1)) is k-pseudo-isomorphic to @(L'(I, xg, 7 ° f))
by w at (f(xg), 7 © f(xp) for k > I’ = max(l, K).

Conversely, if @(E(1, x,, f)) is k-pseudo-isomorphic to @(L'(l, xo, 7 ° f)) for
a sufficiently large I and an integer k > I, then C(I, x,, f) is k-reducible to
L', xpo w ° f) by .

Proof. LetT or I'" be a pseudo-group on Q or Q' such that £. = £ or
£r. = £’ and such that T’ or I is complete at (z, 1) or (#(z), 1) forany z € Q.
By Lemma 5.1.2 we have &(L;:(/, xoo NIA" = T|A" and
QL (l, X 7 © N)|AY = TI|AU" for some neighborhoods A" and A" of
Je(f) and j{ (7 ° f), respectively.

On the other hand, it is easy to see that there is a neighborhood V of x,
such that, for any x € V, £(/, x, f) is weakly K-reducible to £(/, x, 7 o f) by
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7. Therefore by Lemma 5.1.1, the assertion of the former half is obtained.
Since £/, xp f) or L£'(J, xo 7 © f) is @(L(I, x¢, f))-automorphic or
@(L'(l, xq, w © f))-autormorphic, the latter half is now clear, and the proof is
completed.

Theorem 5.2.2. Let (Q, Q’, 7) be a fibred manifold, and let E (resp. E’) be
a differential equation at j;(f) € J%N, Q) (resp. J;’:(vr o f) € JX(N, Q).
Assume that dim N > dim Q, that E and E’ are l-regular at x, and that @(E)
or &(E’) is complete at (f(xy), 1) or (m ° f(xy), 1). If the following conditions (i)
and (i) are satisfied, then @(E) is k-pseudo-isomorphic to @(E") by = at
(f(xe)» T © f(xo)), and DX(0%, E) is weakly K-reducible to DX(8%, E’) by
D*(x) for an integer K:

(i) E is K-reducible to E’ by .

(i) For a sufficiently large integer k, dim(w*),Df = dim Df, and @(E); is
complete at (7 ° f(xg), 1).

Conversely, for a sufficiently large integer k, if @(E) is k-pseudo-isomorphic
to Q(E") by w at (f(xp), 7 ° f(x,)), and DX(*, E) is weakly K-reducible to
DX@*, E"Y by D*(w), then E is (k + K)-reducible to E' by w, and
dim(7%), DY = dim Df.

Proof. By Lemma 4.1.1 and Remark 4.1.1, for a sufficiently large k >
max(/, K), 0 is one-to-ome, and g (k, xo, f) is weakly k-reducible to
Lok, X 7 © f). Therefore by Theorem 5.2.1, the assertion of the former
half follows. By Remark 5.1.1 and the fact that g4 (k, x, f) or
Leonks x, 7 o f) is @(E)- or @(E’)-automorphic, the latter half easily fol-
lows, and the proof is completed.

Now we shall modify the condition (i) in Theorem 5.2.2.

Let E be a differential equation at j(f) which is /-regular at x, and let
{8/}, be a fundamental system of differential invariants of £z, at ji(f).
For a subset § C S (E), we set 0F = {A: I € F such that §/(j'(s)) = A}.

Definition 5.2.1. A differential equation F is said to be F-trivial if, for any
A p € 0F, there exists an element A € D(8, N(Q(E))) such thatp = A o A,

Let (Q, Q’, @) be a fibred manifold, and let £ and E’ be differential
equations at j&(f) and j¥ (7 ° f) respectively. Suppose E is weakly K-reduci-
ble to E' by 7 and f € §(E). We set F = {mos;sisoftheform¢ o f, ¢ €
@(E)}. Then for a neighborhood UK of jX(z o f), F = F|UK is a subset of
S (E).

Theorem 5.23. The condition (i) in Theorem 5.2.2 is equivalent to. the
Sfollowing condition (i’):

(V) E is weakly K-reducible to E’ by w, and E’ is F-trivial.

Proof. Let¢ € @(E)|UX and set g = ¢ © f. Then g € S (E)|UX. Since E’
is §-trivial, Lg(l, x, 7 ° f) is isomorphic to Lgzq(J, x, 7 © g) by Proposi-
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tion 3.1.1. Let ¢ be such an isomorphism. We set f' = 7 o fand @ o f' = g”.
Then g” € (Lgey(l, x, 7 © g)). Since Lgeq(l, x, 7 © g) is @(E’)-automor-
phic, we have an £ € @(E") such that £og” =7og. We set ¢’ =f o @,
Then we have 7w o ¢ o f = ¢’ o 7 o f. Since f is a submersion, we get 7 o ¢ =
¢’ o 7. Sinc (E, E’) is a weakly K-reduced pair, we see that ¢’ € @(E"). That
is, E is K-reducible to E’ by 7. Conversely, if we assume (i), it is easy to see
that the condition (i) is satisfied. Hence the proof is completed.

53. Example 1. We set R2 = {(z,, z,) € R*z, # 0}, and let E be the
differential equaton at j!(f) € J'(R? R3) generated by z,-dz,/dx, —
a(x,, x,) and z, - 9z,/9x, — B(x,, x,), where {x,, x,} is the coordinate system
on N = R? and a(x) = [z, 8z,/8x,JG(N) B(X) = [z, b2, /3]G ).

On the other hand, we assume a(x) # 0 and denote by E’ the differential
equation at j; (f) € J'R% R) generated by (9z,/9x,)/(3z,/9x,) — B/ «,
where f’ = 7 o f, and 7 is the projection of R2 onto R defined by z, =
7(2,, 25).

We shall show the following two assertions:

(1) E is 1-reducible to E’ by 7.

(2) &(F) is 1-pseudo-isomorphic to @(E’) by 7 at (f(xg), f'(xp))-

Let £ be the sheaf of germs of local vector fields on R,, of the form
&(z,) - 9/0z; — &(z2)) - z,- 0/0z,, where £ is any local function on R. (£ is
given in [4] and [7]). Then £ is a regular Lie algebra sheaf on Ri, and
we can easily see that the family {x,, x,, z, - 9z,/9x,, z, -
9z,/9xy, D(z,,2,)/ D(x,, x,)} is a fundamental system of differential in-
variants of £ at j1(f), and the order of £ at (x,, f) is 1. Therefore, if we
denote by E the differential equation at j!(f) generated by z,- 3z,/3x, — a,
z,- 3z, /3x, — B and D(z,, z,)/ D(x,, x;) — (da/dx, — 3B/dx,), then E pos-
sesses a solution, and €(£) = T on a neighborhood AU of jx'o( f), where I'is a
pseudo-group given on a neighborhood of f(xy) such that I' is complete at
(f(x), 1) and £ = £. i

On the other hand, it is easy to see that we have $(E) = S(E). Therefore
we get @(E) = @(E).

Now let £’ be the sheaf of germs of all local vector fields on R. Then
clearly £’ is a regular Lie algebra sheaf on R, and
{x1, x5, (02,/0x,)/(32,/9x,)} is a fundamental system of differential in-
variants of £’ at j}(f) €J'R? R). Therefore @(E") is the pseudo-group on a
neighborhood AU’ of f(x,) consisting of all local diffeomorphism of U’. We
set A =77 (W), (BYHNQ) = Ak, (B N(AU) =AU for £k > 1. Then
(AU¥, A%, 7%) is a fibred manifold (k > 1). Let s € S(E)|U*. Then it is
clear that s’ = 7 o 5 € S(E’)|AU’*. Conversely, let ' € S(EN|U*. Then
(ds’/3x,)/(3s’ /3x,) = B/a. Therefore a/(ds’/9x,) = B/(3ds’/9x,). We shall
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define a local map s of R? to R2 by z,(s) = 5" and z,(s) = a/(3s’/9x,). Then,
since (D(zl( s 2/ D(x15 X3z, # O, there exists a neighborhood V** ¢
QU* of j%(f') such that, for any s’ € S(E")|V, if we construct s from s” by
the above stated way, we have (D(z(s), zy(5))/ D(xy; X))z mx, 7 0. We set
(@5 H(V*) = V%, Then (V*, V", #*) is a fibred manifold, and S (E)|V* and
S (E")|V"* satisfy the condition (2) of Definition 4.1.1 for k¥ > 1. This proves
that E and therefore E are weakly 1-reducible to E’ by 7. By Theorem 5.2.1,
@(E) and therefore @(E) are l-pseudo-isomorphic to @(E’) by = at
() F(xo).

Example 2. Let E denote the system of differential equation at J, (f e

J'®, R) given by
0z, 9z,

—5"_1 = z,, a_xz =0,
and let E' be the differential equation at j2(f") € JXR?, R) given by
3%z,
ox,0x,

where ' = 7 < f, and = is the projection of RZ to R defined by z, = #(z,, z,).
We shall prove that E is 1-reducible to E’ by 7, and that @(E) is O-pseudo-
isomorphic to @(E’) by = at (fAxy), f'(xy))-

It is clear that E is weakly 1-reducible to E’ by #.

Now we shall calculate the automorphmm pseudo-groups G’,(E ) and @(E").
Let ¢ € @(E"), and set s = ¢ os’. Then, if 9% '/3x,8x, =0, we have
3%’ /dx,9x, = 0. Since

325 8% d 3 . 3¢ 8%

<'3x18x2 8z 9x, ox, oz, 0x,0x,

and 9%’ /9x,3x, = 0, we get 9%p/dz}- ds’/0x,- ds’/0x, = O for any s’ €
S (E’). For any (zg, Po» g0) € R?, we have an 5" € S(E’) such that s(xp) = z,
(@s"/3x,)(xp) = po and (ds'/3x,)(xy) = g, Therefore we get 32¢p/3z2 = 0.
This implies that ¢(z,) = a-z, + b, where a and b are constants such that
a # 0. Conversely, let ¢ be a local diffeomorphism of R such that ¢(z,) = a-
z, + b, where a and b are constants such that a # 0. Then it is clear that
¢ € B(E).

Next let ¢ € @(E) and s € S(E), and set z,=z, > ¢ and z,= z, © Y.
Then we have

5o H e

1 2

dr(os) _ By o 5) _
o, C¥e) =0
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Since
a9 08) _ 0 (@5(%s)
ax, ax, ax;
_ 9%, zy(s) 3z(s) N 3%, 3z,(s) dzys)
- 3z 9x dx, 82,822 ax, 9x,
+E. %,(s) 9% 3zy(s) 3zy(s)
9z, Ox,0x, 9z,9z, dx, 9x,
N 3%, 3zy(s)  3zy(s) N oz 3%,(s)
3z2  Ox ax, 9z, dx,9x,’
we get

3%, dzy(s) azl(s) 3%, dz(s) 3zy(s)

z2 ox 9x az 9z, 9x, ax, 0.
i 1 2 2 2

Since for any (29, 23, p9, p3, 4% € R® with 2z = p? # O there is an s € S(E)
such that

az (S) (x0) = az (S) ——(xp) = Pz

s(xo) = (zb 2)

and (9z,(s)/3x,)(x,) = q° we get 8 2z, /822 = Oand 3%,/0z,9z, = 0, which
implies that Z,(z,, z,) = h(z))z; + k(z,) and h(z,) = constant a # 0.
On the other hand, we have
3zy(s) 3z, dzy(s) + 9z, dz,(s)
dx, 9z, 0x, 9z, Ox,

so that (3z,/9z,)dz,(s)/dx, = 0. Since for any (z}, z3, pJ) € R® there is an
s € S(E) such that s(xp) = (29, z3) and (3z,(s)/3x,)(xo) = p3, we have
9z,/9z, = 0 which implies that Z,(z,, z,) is of the form 7(z,). Since Z,(z,, z,)
= a-z, + k(z,), we get

az, 9z, 822

a_xl = a + & (z2)
Since z,(s) = (3z,/9x,)(s) and Z,(s) = (32, /axl)(s) for any s € S(E), we
have n(z,(s)) = a- z,(s) + k'(zx(5)) - 92)(s)/9x, for s € S(E). Now for any
(g% z9) € R? there is an s € $(E) such that zy(s)(xg) = zJ and
(325(s)/3x,)(xo) = q°. Therefore k'(z,) = 0, that is, k is also constant (=b5).
Thus Z\(z,,2,) = a-z, + b. Since Z,(s) = (3Z,/3x,Xs) = a-z,(s) for s €
S(E) and for any z° € R there is an s € S(E) with s(xo) = z°% we have
Z, = a- z,. This proves that for any ¢ € @(E) we have constants a and »

>
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such that a # 0, z,(z,, zp) = a- z; + b and z)(z,, z,) = a- z,. Conversely, let
¢ be a local diffeomorphism of R?such that z, oy = g-z; + band z, e ¢ =
a-z,, where a and b are constants and @ ¥ 0. Then it is obvious that
¥ € @(E).

It is now clear that @(E) is O-pseudo-isomorphic to @(E’) by 7 at any
(p,p) € R? X R with p’ = #(p). Therefore E is 1-reducible to E’ by 7.

6. Compatibility of reduction and equivalence

6.1. In this section we shall prove the compatibility of reducibility and
equivalence of differential equations.

Let E be a differential equation at j&(f) € J%(N, Q), and let S (E) denote
the space of solutions of E. Let * be a neighborhood of jX(f), and set
S(E)U = {s € S(E); Im j*(s) c U*}.

Definition 6.1.1. A differential equation E, at j*{(f') € J*(N, Q) is said
to be k-isomorphic to a differential equation E, at j*(f?) € J*(N, Q),
k > 1, if there are neighborhoods U¥ and QX of j*(f!) and j*(f?), respec-
tively, and a diffeomorphism ¢ of @, = BX(UF) onto A, = B4UL) such
that ¢ induces a one-to-one correspondence ¢* of S (E)|U to & (E,)| UL by
¢*(s) = ¢ < 5. Then ¢ is called a k-isomorphism of E, to E,. An isomorphism
is also called a O-isomorphism, and “0O-isomorphic” means “isomorphic”.

Proposition 6.1.1. If E,| is k-isomorphic to E,, then E, is l-isomorphic to E,
forl > k.

Proof. Let ¢ be a k-isomorphism of E, to E, such that ¢* is a one-to-one
map of & (E)|Uf to §(E,)|UL. We set, for I > k, AU = (o)) (U¥). Then it is
clear that ¢ induces a one-to-one map ¢’ of S(EDU to S(E,|US. This
proves Proposition 6.1.1.

Let E; and E; be differential equations at j*(f*) € J%N, Q) and j¥(f%) €
J%(N, Q’), respectively, for i = 1, 2, and let (Q, Q’, 7) be a fibred manifold.
We suppose f* = 7 o f'.

Lemma 6.1.1. Assume that E; is weakly K-reducible to E! by =, and that
there is a k-isomorphism ¢ of E, to E,. If there is a local diffeomorphism ¢’ of
Q' such that ¢' o m = 7 ° ¢, then ¢’ is a k’-isomorphism of E| to E;, k' =
max(k, K).

Proof. Since E, is weakly K-reducible to E/, for any k > K there exist
nelghborhoods G?L" of j4(f") and Ak of jX(f), respectively, such that
(U, U,%, 7*) is a fibred manifold and such that = induces a map of
S(E)IC’?L" onto &(E; )l"?l,”‘ for i = 1,2. On the other hand, since ¢ is a
k-isomorphism, by Proposition 6.1.1, ¢ is a k’-isomorphsim, and k' =
max(k, K). We may assume that ¢* is a one-to-one map of S (E,)|UX to
S(E,)|UL. Let s € S(E)D|U*. Then we have an 5 € S(E,)|UF such that
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s =mcs. Thus we get ¢ o5 =¢'oqros=mwopeos. Since ¢pos€E
S(EY|UE, we have 7o ¢os € S(E) . This proves that ¢ o5 €
S (E;)|U*. Therefore ¢’ is a k’-isomorphism of E; to Ej, and the proof is
completed.

62. Let (Q, 0’ 7) be a fibred manifold and let T (resp. I') be a
pseudo-group on Q (resp. Q) which is complete at (2, 1) for any z € Q (resp.
at (2/, D forany z’ € Q’).

Let E; (resp. £/) be a differential equation at ¥(f) € JHN, Q) (resp.
JS(f) € J%(N, Q") such that @(E) =T on a neighborhood of f(x) (resp.
&(E/) = I'" on a neighborhood of f(x) with f' = w o f),i = 1, 2.

Let {Bj”}}"’;l be a fundamental system of differential invariants of £ at
Ji(f), and set 8" = (8/, - - - , §;%), where I > the order of £r. at (f(x), 1).

Let j/(g) be a point of JY(N, Q') near to j/(f) such that we can choose
sufficiently small neighborhoods Y/ and QL” of j(g’) and j!(f"), respectively,
which satisfy U 3 j{(g") and V"’ > U”.

Theorem 6.2.1. Set 0”(G'(f) = N and 0”°(j'(g)) = v, and assume the
following conditions:

(1)dim N > dim Q.

Q) f € 3(E).

) (E, E}) is a weakly K-reduced pair, and E] is l-regular at x.

(4) There is an m-isomorphism ¢ of E, to E, such that g’ = m o ¢ © f.

(5) There is an element A € D(0", IUT")) such that A o X' = y'.

Then we have an m’-isomorphism ¢’ of E| to E, such that ¢’ e m = w o ¢ where
m’ = max(m, K). ,

Proof. Since dim N > dim Q’, by Lemma 5.1.2, £.(, x, f) and
£r(1, x, g’) which are defined on 9" are I'"-closed, where I'” = I"|2L". Since
A o X' = y/, by Proposition 3.1.1 there is a 0-isomorphism ¢’ of E~(/, x, f') to
Er(l, x, g’) such that D(8”, ¢') = A. Set g” = ¢’ o f". Since Er(/, x, &) is
I"-automorphic, there exists an element ¥’ € I'V such that g’ = ¥’  g”. Set
¢ = vy o ¢’. Then we have g’ = ¢’ o f' and therefore w e p o f=¢ o7 o f.
Since f is a submersion, we get 7 ° ¢ = ¢’ o 7 on a neighborhood of f(x).
Therefore ¢’ is an m’-isomorphism of E| to E; by Lemma 6.1.1, and the proof
is completed.

6.3. Example 3. Let £ and T be the same as in Example 1. Let ¢ € (D),
and X = £(z,)3/9z, —~ £(z,)2,d/93z, be a local cross section of £. Then ¢, X
is also a local cross section of £, and therefore ¢, X is of the form #(,)d /82,
— 0(Z,)2,0/8%,, where Z, = z, o ¢ = ¢' (i = 1, 2). Thus we have

Dig', ) ( &z)) )=( n(£) )

D(xy, x,) -¢(2,)z, - (£))z,
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so that

2(2) = 7(6'(z0, zz))—— &z) — a“’  E(2) 2,

- —0(8)% = —TI’(‘Pl(zp 22))4’2 = o §( ) — 5 E(z)z,

On the other hand,

s aﬂ(¢l(zl’ 22)) azl 877(4’1(21’ zz)) 822
A e ( 9z, ) az, 9z, ¥z, 4

=—{[a ) + S ) - e )

a¢ 1 azl 82¢l
T3z, &(z) 22] 07, +[ 02,0z, )

_ 32 , 3 , 9z
a‘i £z - & z(,)] } &
Since £ 1s arbitrary, we get the following equations:
L&+(1’;¢l._az_1+ o%! .&).qbz:o,

dz, dz3 0%, 0z)9z, 9z,

9z, 9z, 0z,0z, 9z, 3z2 9z, | 9%,

2 2,1 2 1
W {(?w 0% .z).éz_x+<a¢ z+61).3{_z}.¢z=0,

st _
9z,
Therefore ¢! is a function of the form a(z,), and from the first and the second
of the above equations we get

32 | 9%' 9z 2 _, 3> dp! 9z, o2= 0.

+  — —_— —_—————

Bz, 82 O 3z, 27 Bz, 0%,

which are equivaient to
3! 37 3%
9z, 9z, 9z3
since 9z,/97, = (3¢'/3z,)”". By the above second equation we see that

$2(2,, 2,) is of the form S(z,) - z,. Replacing ¢!(z,) and $*(z,, z,) by a(z,) and
B(z)) - z, respectively, from the above first equation we get the following
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ordinary differential equation with respect to one unknown function f3:

a”(z,)

B (21) =- a'(z,) ) B(zl)’
the general solution of which is ¢/a’(z,). This proves that if ¢ € 9N (T) then ¢
must be of the form ¢'(z,, z,) = a(z;) and ¢*(zy, z,) = ¢ 2,/ a(z)).

Conversely, if a local diffeomorphism ¢ of R2 is of the form
(44 22

0'(z1, 2) = a(z)), ¢*(21,29) = T(z—l)—’

it is easy to see that ¢V*(z,- 9z,/0x,) = ¢ - (2, 9z,/3x;), i = 1, 2. Therefore
we get ¢ € IN(T).

Now we can see such an example that the compatibility of reduction and
equivalence holds. Let E; be the differential equation at j} (f) € J'(R? R2)
generated by

oz 9z,

Z* a_xll = a(x), x), 2p- 3x_2 = Bi(x;, x2),
where
d )
609 =252 ), A =552 )

Assume that a,(x) # 0, and denote by E; the differential equation at ]x (e
J(R?, R) generated by

az, / az1 —8/a

where f' =7 o f and 7 is the projection of R2 onto R defined by z, =
(215 Z5).

Suppose E; is O-isomorphic to E,, and ¢ is such a O-isomorphism. Since
@(E;) =T on a neighborhood of f(x,), we get ¢ € J(T). By the above
calculation of 9N (T), we have ¢M*(z, - 82,/3x) = a- (z,- 92,/9x;), where a
is constant 0. Therefore, if E, if O-isomorphic to E,, there is a constant
b % 0 such that a, = b- a; and B8, = b- B,. Consequently we get B,/a, =
B,/ a, and therefore E{ = Ej, in particular, Ej is O-isomorphic to E;.

7. Closedness of the pseudo-group of isometries
7.1. Let ©* be the sheaf of germs of local Killing vector fields of R?, and
let T(®?) be the pseudo-group of local isometries of RY Denote by
{xp,* - -, x,} (resp. {zl, - -+, z,}) the coordinate system on R (resp. R?),
and set 5, = S7_, (3%,/9x?)’. Then j p; is a differential invariant of €7 at any
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JAH) € J¥R* RY). In the following lemma, as for the property P(2, x, f),
refer to §8.

Lemma 7.1.1. T'(®9) satisfies the property P(2, x, f).

Proof. Let ¢ be a local diffeomorphism of R? such that $@*5, = 5,. Then
we get 9¢,/dz0z, =0 and =%_, 3¢,/0z,- 34;/0z, = §; (1 <i,j,k <g),
where ¢, = z; o ¢. This implies that ¢,(z) = 29_, a;2; + b;, (g;) € O(g), on
the domain of ¢, so that ¢ € I'(89), that is, I'(@%) = {¢; local diffeo. of R?,
¢@*5, = p,}. Thus ©7 satisfies the property P(2, x, f) for any (x, f).

Set A(x) = UM 1 <j <n

Proposition 7.1.1. If A; is a submersion on a neighborhood of x, for some j,
then T'(87) is 2-closed at (xg f).

Proof. We shall show that I'(©7) is 2-closed at (x, f) if A, is a submersion.
Let V2 be a neighborhood of 7 (f), and set

S(v? = U graph(j3(s)) n V2.
SES (O], x0f))

If ¢ € R, xp f)), we have ¢@P*p = 5 on S(V?, because
¢@|S(v?) is a local transformation of S(V?) and 5,(X5) =
1UXD) = A(x) for any two s and ¢t € §(OY, x, f)- Let
{Xp X2y - s Zg* ,pj, . ,pjk, - } be the natural coordinate
system on J Z(R" R?). Then we may assume that V2 possesses a product
structure JC X £ X P, where K, £ or @ is a cubic neighborhood of a point
of R", R? or R”™ such that {x,---,x,}, {2, --+,2z} or
{pi,- - ,Pji, s ,p,-‘,;, - -« } is the coordinate system on K, € or ¥ . More-
over we may assume that & possesses a product structure ¥' X 92, where !
is a cubic neighborhood of a point of R? such that {p],,: - - ,pf} is the
coordinate system on 9! and %? is a cubic neighborhood of a point of R” ¢
such that {---,p/,- -+ ,ph -} (h#1 or k+ 1) is the coordinate
system on 2. Let = be the natural projection of V2 — P!. We shall prove
that #(S(V?) is open in ¥'. Let ¢ € (7). Then we have ¢(z) =

29, a9z + b, (a9) € O(g) on the domain of ¢. For s €
S (0%, xq, ), we set s’ = ¢ o 5. Then

3% g 823
ox? ,gl %(9)* -8_—2-

Since A, is a submersion on a neighborhood W of x4, A,(%W) is open in R.
Since

2 32 92
hi(2(s) = =(%x—) =M@, 33 = (;‘%(:c),- = a%;oo)
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is a point of (g — 1)-sphere S77'(A,(x)) in R? with the radius yA,(x) . On the
other hand, O(g) acts transitively on S77'(A,(x)). Since T'(89) 3 ¢ — (a,($))
€ O(q) is onto and since #9(/, xo, ) admits T(@%), {(@Xe ° 5)/3x7)(x);
¢ €ET®7, x € W} is open in RI Therefore #(S(V?)) =

{(@%o ° 5)/xI)(x); $ ET(@7), x € W} N P is open in P'. Now p, is
considered as a function on ?'. Therefore the equality $®*5, = 5, on S(V'?)
means the equality ¢?*5, = 5, on #(S(V?)). Since #(S(¥?)) is open in ¥,
we get ¢@*5, =5, as a function. As was proved in Lemma 7.1.1, the
equation ¢$@*p, = p, implies ¢ € I'(@7). Therefore we have proved that if
¢ € (O, x,, f)), then ¢ € I'(©?). This implies that I'(@7) is /-closed at
(xq, f) for I > 2, and hence the proof is completed.

8. Appendix 1 (Completeness of pseudo-groups)

8.1. LetT be a pseudo-group on Q such that £ is an N-regular weak Lie
algebra sheaf, and let {§/}7, be a fundamental system of differential
invariants of £ atj/(f) € J(N, Q).

Definition 8.1.1. T is said to satisfy the property P(/, x,f) (resp.
P(, x, f)) if the following statement holds: Let ¥’ be a sufficiently small
neighborhood of j{(f) on which 8 (1 < j < my) is defined, and let ¢ be a
local diffeomorphism of Q such that 7 maps an open subset W/ (3, (f") of
V! into V’. Then ‘¢, a restriction of ¢ to a neighborhood ‘W c B/(W?*) of
F/(x?, is in T if and only if ¢@*8/ =6/ (1 <j <m) on a neighborhood
W= (BH)N(W) n WI(2,L(f)) for an integer I > O (resp. for any integer
1> 0).

Let T be a pseudo-group on Q, and let f be a diffeomorphism of a
neighborbood of x € Q to a neighborhood of f(x) € Q.

Definition 8.1.2. T is said to be complete at (x,f) if the following
conditions are satisfied:

(1) £ is a regular Lie algebra sheaf around f(x).

(2) T satisfies the property P(o0, x, f).

Proposition 8.1.1. Suppose a pseudo-group T on Q satisfies the following
conditions:

(i) Er is a regular weak Lie algebra sheaf.

(i) T satisfies the property P(o0, x, f).

Then T is complete at (x, f).

Proof. Let X be a vector field on a neighborhood U c Q of f(x), and
assume that F,(X(z)) € L(z) for any z € U. As for the definition of F,, refer
to [6, p. 462]. Let ¢, be the local 1-parameter group of local transformation of
U generated by X. Since the condition that F,(X(2)) € L(z) for any z € U
implies that X is a local cross section of D defined on a neighborhood of
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JX(f) for any I > 0. Since T satisfies the property P(0, x, f), We can easily see
that ¢, € T'. Therefore X is a local cross section of £;. This means that £ is a
Lie algebra sheaf. Therefore I' is complete at (x, f), and the proof is
completed.

Now let I' be a pseudo-group on Q such that £y is a regular weak Lie
algebra sheaf.

Proposition 8.1.2. T is complete at (24, 1) if and only if T is locally defined
at zy by a system of differential equations (4) at jz’o(l) eJ "9, Q) for an
integer |.

The proof is given in [6, Propositions 8.1, 8.2].

9. Appendix 2 (Order of pseudo-groups)

9.1. Let £ be an N-regular weak Lie algebra sheaf on Q.

Proposition 9.1.1. There is an integer K such that, for any k > K, £(k +
1, x, f) = pB(k, x, f) on a neighborhood of j¥*'(f) € J**}(N, Q), where
pLR(k, x, f) is the standard prolongation of £(k, x, f).

The proof is given in [6, Lemma 4.1].

Definition 9.1.1. We denote by K, the minimum integer K satisfying
Proposition 9.1.1. The integer K, is called the order of £ at (x, f).

Let T be a pseudo-group on Q, and let E be a differential equation at
J2(f) € JA(N, Q) where f is a solution of E.

Definition 9.1.2. E is said to be I'-automorphic if the following conditions
are satisfied:

(1) For any ¢ € T, ¢ © fis a solution of E if the composite is defined.

(2) Any solution s of E near to f is of the form ¢ ° f for some ¢ €T
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